kafka

kafka是一个分布式、支持分区(partition)、多副本的(replica),基于zookeeper协调的分布式消息系统。


kafka.png
topic

Topic是一个类别的名称,同类消息发送到同一个Topic下面。对于每一个Topic,下面可以有多个分区 (Partition)日志文件:


partition.png
offset

每个consumer是基于自己在partition的消费进度(offset)来进行工作的.在kafka中,消费offset由consumer自 己来维护;一般情况下我们按照顺序逐条消费commit log中的消息,当然我可以通过指定offset来重复消费某些消息, 或者跳过某些消息。 这意味kafka中的consumer对集群的影响是非常小的,添加一个或者减少一个consumer,对于集群或者其他consumer 来说,都是没有影响的,因为每个consumer维护各自的offset。所以说kafka集群是无状态的,性能不会因为 consumer数量受太多影响。kafka还将很多关键信息记录在zookeeper里,保证自己的无状态,从而在水平扩容时非常方便。

producers

生产者将消息发送到topic中去,同时负责选择将message发送到topic的哪一个partition中。通过round­robin做简单的 负载均衡。也可以根据消息中的某一个关键字来进行区分。通常第二种方式使用的更多。

Consumers
consumers.png

一个partition同一个时刻在一个consumer group中只有一个consumer instance在消费,从而保证顺序。 consumer group中的consumer instance的数量不能比一个Topic中的partition的数量多,否则,多出来的 consumer消费不到消息。

server.properties
配置.png

原理.png
Kafka核心总控制器Controller

在Kafka集群中会有一个或者多个broker,其中有一个broker会被选举为控制器(Kafka Controller),它负责管理整个 集群中所有分区和副本的状态。
当某个分区的leader副本出现故障时,由控制器负责为该分区选举新的leader副本。
当检测到某个分区的ISR集合发生变化时,由控制器负责通知所有broker更新其元数据信息。
当使用kafka-topics.sh脚本为某个topic增加分区数量时,同样还是由控制器负责分区的重新分配。

Controller选举机制

在kafka集群启动的时候,会自动选举一台broker作为controller来管理整个集群,选举的过程是集群中每个broker都会 尝试在zookeeper上创建一个 /controller 临时节点,zookeeper会保证有且仅有一个broker能创建成功,这个broker 就会成为集群的总控器controller。
当这个controller角色的broker宕机了,此时zookeeper临时节点会消失,集群里其他broker会一直监听这个临时节 点,发现临时节点消失了,就竞争再次创建临时节点,就是我们上面说的选举机制,zookeeper又会保证有一个broker 成为新的controller。
具备控制器身份的broker需要比其他普通的broker多一份职责,具体细节如下:

  • 监听broker相关的变化。为Zookeeper中的/brokers/ids/节点添加BrokerChangeListener,用来处理broker 增减的变化。
  • 监听topic相关的变化。为Zookeeper中的/brokers/topics节点添加TopicChangeListener,用来处理topic增减 的变化;为Zookeeper中的/admin/delete_topics节点添加TopicDeletionListener,用来处理删除topic的动作。
  • 从Zookeeper中读取获取当前所有与topic、partition以及broker有关的信息并进行相应的管理。对于所有topic 所对应的Zookeeper中的/brokers/topics/[topic]节点添加PartitionModificationsListener,用来监听topic中的 分区分配变化。
  • 更新集群的元数据信息,同步到其他普通的broker节点中。
Partition副本选举Leader机制

controller感知到分区leader所在的broker挂了(controller监听了很多zk节点可以感知到broker存活),controller会从每 个parititon的 replicas 副本列表中取出第一个broker作为leader,当然这个broker需要也同时在ISR列表里。

消费者消费消息的offset记录机制

每个consumer会定期将自己消费分区的offset提交给kafka内部topic:__consumer_offsets,提交过去的时候,key是 consumerGroupId+topic+分区号,value就是当前offset的值,kafka会定期清理topic里的消息,最后就保留最新的那条数据。
因为__consumer_offsets可能会接收高并发的请求,kafka默认给其分配50个分区(可以通过 offsets.topic.num.partitions设置),这样可以通过加机器的方式抗大并发。


rebalance.png
消费者Rebalance机制

消费者rebalance就是说如果consumer group中某个消费者挂了,此时会自动把分配给他的分区交给其他的消费者,如果他又重启了,那么又会把一些分区重新交还给他。
如下情况可能会触发消费者rebalance
1、consumer所在服务重启或宕机了
2、动态给topic增加了分区
3、消费组订阅了更多的topic

rebalance过程如下

当有消费者加入消费组时,消费者、消费组及组协调者之间会经历以下几个阶段。

第一阶段,选择组协调器

每个consumer group都会选择一个broker作为自己的组协调器coordinator,负责监控这个消费组里的所有消费组的心跳,以及判断是否宕机,然后开启消费者rebalance。consumer group中的每个consumer启动时会向kafka集群中的某个节点发送FindCoordinatorRequest请求来查找对应组协调器GroupCoordinator,并跟其建立网络连接。

第二阶段,加入消费组 join group

在成功找到消费组所对应的GroupCoordinator之后就进入加入消费组的阶段,在此阶段的消费者会向GroupCoordinator发送joinGroupRequest请求,并处理响应。然后GroupCoordinator 从一个consumer group中 选择第一个加入group的consumer作为leader(消费组协调器),把consumer group情况发送给这个leader,接着这个leader会负责制定分区方案。

第三阶段( SYNC GROUP)

consumer leader通过给GroupCoordinator发送SyncGroupRequest,接着GroupCoordinator就把分区方案下发给各 个consumer,他们会根据指定分区的leader broker进行网络连接以及消息消费。

producer发布消息机制剖析
写入方式

producer采用push模式将消息发布到broker,每条消息都被append到partition中,属于顺序写磁盘(顺序写磁盘效率比)。

消息路由

producer发消息到broker时,会根据分区算法选择将其存储到哪一个partition。其路由机制为:
1.指定partition,则直接使用;
2.未指定partition但指定key,通过对key的value进行hash选出一个partition;
3.partition和key都未指定,使用轮询选出一个partition;

写入流程

1.producer先从zookeeper的"/brokers/.../state"节点找到该partition的leader
2.producer将消息发送给该leader
3.leader将消息写入本地log
4.follows从leader pull消息,写入本地log后向leader发送ACK
5.leader收到所有ISR中的replica的ACK后,增加HW(high watermark,最后commit的offset)并向producer发送ACK。

写入流程
HW与LEO

HW俗称高水位,HighWatermark的缩写,取一个partition对应的ISR中最小的LEO(log-end-offset)作为HW,consumer最多只能消费到HW所在的位置。另外每个replica都有HW,leader和follow各自负责更新自己的HW的状态。对于leader新写入的消息,consumer不能立刻消费,leader会等待该消息被所有ISR中的replicas同步后更新HW,此时消息才能被consumer消费。这样就保证了如果leader所在的broker失效,该消息仍然可以从新选举的leader中获取。对于来自内部的broker的读取请求,没有HW的限制。
假设某分区的 ISR 集合中有 3 个副本,即一个 leader 副本和 2 个 follower 副本,此时分区的 LEO 和 HW 都分别为 3 。消息3和消息4从生产者出发之后先被存入leader副本。


image.png

在消息被写入leader副本之后,follower副本会发送拉取请求来拉取消息3和消息4进行消息同步。


image.png

在同步过程中不同的副本同步的效率不尽相同,在某一时刻follower1完全跟上了leader副本而follower2只同步了消息3,如此leader副本的LEO为5,follower1的LEO为5,follower2的LEO 为4,那么当前分区的HW取最小值4,此时消费者可以消费到offset0至3之间的消息。
image.png

image.png

由此可见kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的follower副本都复制完,这条消息才会被确认已成功提交,这种复制方式极大的影响了性能。而在异步复制的方式下,follower副本异步的从leader副本中复制数据,数据只要被leader副本写入就会被认为已经成功提交。在这种情况下,如果follower副本都还没有复制完而落后于leader副本,然后leader副本宕机,则会造成数据丢失。kafka使用这种ISR的方式有效的权衡了数据可靠性和性能之间的关系。

日志分段存储

Kafka 一个分区的消息数据对应存储在一个文件夹下,以topic名称+分区号命名,kafka规定了一个分区内的 .log 文件 最大为 1G,做这个限制目的是为了方便把 .log 加载到内存去操作:


image.png

这个 9936472 之类的数字,就是代表了这个日志段文件里包含的起始 Offset,也就说明这个分区里至少都写入了接近 1000 万条数据了。
Kafka Broker 有一个参数,log.segment.bytes,限定了每个日志段文件的大小,最大就是 1GB。 一个日志段文件满了,就自动开一个新的日志段文件来写入,避免单个文件过大,影响文件的读写性能,这个过程叫做 log rolling,正在被写入的那个日志段文件,叫做 active log segment。

也正是由于这种文件按partition存储的方式,导致kafka在topic增多时、partition分区过多时,每个broker上的log文件增多,consumer在读取消息时,文件读取方式由顺序I/O开始接近于随机I/O,导致性能降低。
kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。index文件中并没有为数据文件中的每条message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保存在内存中。


image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,517评论 6 539
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,087评论 3 423
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 177,521评论 0 382
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,493评论 1 316
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,207评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,603评论 1 325
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,624评论 3 444
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,813评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,364评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,110评论 3 356
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,305评论 1 371
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,874评论 5 362
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,532评论 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,953评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,209评论 1 291
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,033评论 3 396
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,268评论 2 375

推荐阅读更多精彩内容