166、Spark Streaming实战开发进阶之新闻网站关键指标实时统计

生产者代码

public class AccessProducer extends Thread {

    private static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
    private static Random random = new Random();
    private static String[] sections = new String[] {"country", "international", "sport", "entertainment", "movie", "carton", "tv-show", "technology", "internet", "car"};
    private static int[] arr = new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    private static String date;

    private Producer<Integer, String> producer;
    private String topic;

    public AccessProducer(String topic) {
        this.topic = topic;
        // producer = new Producer<Integer, String>(createProducerConfig());
        producer = new KafkaProducer<>(createProducerProperties());
        date = sdf.format(new Date());
    }

    private Properties createProducerProperties() {
        Properties props = new Properties();
        props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("bootstrap.servers", "192.168.114.200:9092,192.168.114.201:9092:9092,192.168.114.202:9092");
        return props;
    }

    @Override
    public void run() {
        int counter = 0;

        while(true) {
            for(int i = 0; i < 100; i++) {
                String log = null;

                if(arr[random.nextInt(10)] == 1) {
                    log = getRegisterLog();
                } else {
                    log = getAccessLog();
                }

                producer.send(new ProducerRecord<Integer, String>(topic, i, log));

                counter++;
                if(counter == 100) {
                    counter = 0;
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    }

    private static String getAccessLog() {
        StringBuffer buffer = new StringBuffer("");

        // 生成时间戳
        long timestamp = System.currentTimeMillis();

        // 生成随机userid(默认1000注册用户,每天1/10的访客是未注册用户)
        Long userid = 0L;

        int newOldUser = arr[random.nextInt(10)];
        if(newOldUser == 1) {
            userid = null;
        } else {
            userid = (long) random.nextInt(1000);
        }

        // 生成随机pageid(总共1k个页面)
        Long pageid = (long) random.nextInt(1000);

        // 生成随机版块(总共10个版块)
        String section = sections[random.nextInt(10)];

        // 生成固定的行为,view
        String action = "view";

        return buffer.append(date).append(" ")
                .append(timestamp).append(" ")
                .append(userid).append(" ")
                .append(pageid).append(" ")
                .append(section).append(" ")
                .append(action).toString();
    }

    private static String getRegisterLog() {
        StringBuffer buffer = new StringBuffer("");

        // 生成时间戳
        long timestamp = System.currentTimeMillis();

        // 新用户都是userid为null
        Long userid = null;

        // 生成随机pageid,都是null
        Long pageid = null;

        // 生成随机版块,都是null
        String section = null;

        // 生成固定的行为,view
        String action = "register";

        return buffer.append(date).append(" ")
                .append(timestamp).append(" ")
                .append(userid).append(" ")
                .append(pageid).append(" ")
                .append(section).append(" ")
                .append(action).toString();
    }

    public static void main(String[] args) {
        AccessProducer producer = new AccessProducer("news");
        producer.start();
    }
}

kafka创建topic 并测试

kafka-topics.sh --zookeeper 192.168.114.200:2181,192.168.114.201:2181,192.168.114.202:2181 --topic news --replication-factor 2 --partitions 1 --create
kafka-console-consumer.sh --zookeeper 192.168.114.200:2181,192.168.114.201:2181,192.168.114.202:2181 --topic news --from-beginning

代码

main函数

    public static void main(String[] args) {
        // 创建Spark上下文
        SparkConf conf = new SparkConf()
                .setMaster("local[2]")
                .setAppName("NewsRealtimeStatSpark")
                .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
        JavaStreamingContext jssc = new JavaStreamingContext(
                conf, Durations.seconds(5));

        // 创建输入DStream
        Map<String, Object> kafkaParams = new HashMap<String, Object>();
        kafkaParams.put("bootstrap.servers", "192.168.114.200:9092,192.168.114.201:9092,192.168.114.202:9092");
        kafkaParams.put("key.deserializer", IntegerDeserializer.class);
        kafkaParams.put("value.deserializer", StringDeserializer.class);
        kafkaParams.put("group.id", "111");
        kafkaParams.put("auto.offset.reset", "latest");
        kafkaParams.put("enable.auto.commit", false);
        Collection<String> topics = Arrays.asList("news");
        JavaInputDStream<ConsumerRecord<Integer, String>> lines = KafkaUtils.createDirectStream(jssc,
                LocationStrategies.PreferConsistent(),
                ConsumerStrategies.Subscribe(topics, kafkaParams));
        // 过滤出访问日志
        JavaDStream<ConsumerRecord<Integer, String>> accessDStream = lines.filter(new Function<ConsumerRecord<Integer, String>, Boolean>() {
            @Override
            public Boolean call(ConsumerRecord<Integer, String> v1) throws Exception {
                String value = v1.value();
                String[] strings = value.split(" ");
                if ("view".equals(strings[5])) {
                    return true;
                }
                return false;
            }
        });
        JavaDStream<String> accessStringDStreamString = accessDStream.map(new Function<ConsumerRecord<Integer, String>, String>() {
            @Override
            public String call(ConsumerRecord<Integer, String> v1) throws Exception {
                return v1.value();
            }
        });

        JavaDStream<ConsumerRecord<Integer, String>> registerDStream = lines.filter(new Function<ConsumerRecord<Integer, String>, Boolean>() {
            @Override
            public Boolean call(ConsumerRecord<Integer, String> v1) throws Exception {
                String value = v1.value();
                String[] strings = value.split(" ");
                if ("view".equals(strings[5])) {
                    return false;
                }
                return true;
            }
        });

        JavaDStream<String> registerDStreamString = registerDStream.map(new Function<ConsumerRecord<Integer, String>, String>() {
            @Override
            public String call(ConsumerRecord<Integer, String> v1) throws Exception {
                return v1.value();
            }
        });


        // 统计第一个指标:实时页面pv
        calculatePagePv(accessStringDStreamString);
        // 统计第二个指标:实时页面uv
        calculatePageUv(accessStringDStreamString);
        // 统计第三个指标:实时注册用户数
        calculateRegisterCount(registerDStreamString);
        // 统计第四个指标:实时用户跳出数
        calculateUserJumpCount(accessStringDStreamString);
        // 统计第五个指标:实时版块pv
        calcualteSectionPv(accessStringDStreamString);
        jssc.start();
        try {
            jssc.awaitTermination();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        jssc.close();

    }

实时页面pv

    private static void calculatePagePv(JavaDStream<String> accessStringDStreamString) {
        JavaPairDStream<Long, Long> pageidDStream = accessStringDStreamString.mapToPair(new PairFunction<String, Long, Long>() {
            @Override
            public Tuple2<Long, Long> call(String s) throws Exception {
                String[] strings = s.split(" ");
                return new Tuple2<>(Long.parseLong(strings[3]), 1L);
            }
        });
        JavaPairDStream<Long, Long> pagePvDStream = pageidDStream.reduceByKey(new Function2<Long, Long, Long>() {
            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1 + v2;
            }
        });

        pagePvDStream.print();
    }

实时页面uv

    private static void calculatePageUv(JavaDStream<String> accessStringDStreamString) {
        JavaDStream<String> pageidUseridDStream = accessStringDStreamString.map(new Function<String, String>() {
            @Override
            public String call(String v1) throws Exception {
                String[] split = v1.split(" ");
                return split[3] + "_" + split[2];
            }
        });

        JavaDStream<String> distinctPageidUseridDStream = pageidUseridDStream.transform(new Function2<JavaRDD<String>, Time, JavaRDD<String>>() {
            @Override
            public JavaRDD<String> call(JavaRDD<String> v1, Time v2) throws Exception {
                return v1.distinct();
            }
        });

        JavaPairDStream<Long, Long> pageidDStream = distinctPageidUseridDStream.mapToPair(new PairFunction<String, Long, Long>() {
            @Override
            public Tuple2<Long, Long> call(String s) throws Exception {
                String[] strings = s.split("_");
                return new Tuple2<>(Long.parseLong(strings[0]), 1L);
            }
        });

        JavaPairDStream<Long, Long> pageUvDStream = pageidDStream.reduceByKey(new Function2<Long, Long, Long>() {
            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1 + v2;
            }
        });

        pageUvDStream.print();
    }

实时注册用户数

    private static void calculateRegisterCount(JavaDStream<String> registerDStreamString) {
        JavaDStream<Long> count = registerDStreamString.count();
        count.print();
    }

实时用户跳出数

    private static void calculateUserJumpCount(JavaDStream<String> accessStringDStreamString) {
        JavaPairDStream<Long, Long> useridDStream = accessStringDStreamString.mapToPair(new PairFunction<String, Long, Long>() {
            @Override
            public Tuple2<Long, Long> call(String s) throws Exception {
                String[] strings = s.split(" ");
                Long userId = -1L;
                if (!"null".equalsIgnoreCase(strings[2])) {
                    userId = Long.parseLong(strings[2]);
                }
                return new Tuple2<>(userId, 1L);
            }
        });

        JavaPairDStream<Long, Long> useridCountDStream = useridDStream.reduceByKey(new Function2<Long, Long, Long>() {
            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1 + v2;
            }
        });

        JavaPairDStream<Long, Long> jumpUserDStream = useridCountDStream.filter(new Function<Tuple2<Long, Long>, Boolean>() {
            @Override
            public Boolean call(Tuple2<Long, Long> v1) throws Exception {
                if (v1._1 != -1) {
                    if (v1._2 == 1) {
                        return true;
                    }
                    return false;
                }
                return false;
            }
        });

        JavaDStream<Long> count = jumpUserDStream.count();

        count.print();
    }

实时版块pv

    private static void calcualteSectionPv(JavaDStream<String> accessStringDStreamString) {
        JavaPairDStream<String, Long> sectionDStream = accessStringDStreamString.mapToPair(new PairFunction<String, String, Long>() {
            @Override
            public Tuple2<String, Long> call(String s) throws Exception {
                String[] strings = s.split(" ");

                return new Tuple2<>(strings[4], 1L);
            }
        });

        JavaPairDStream<String, Long> sectionPvDStream = sectionDStream.reduceByKey(new Function2<Long, Long, Long>() {
            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1 + v2;
            }
        });

        sectionPvDStream.print();

    }
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,763评论 6 539
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,238评论 3 428
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 177,823评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,604评论 1 317
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,339评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,713评论 1 328
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,712评论 3 445
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,893评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,448评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,201评论 3 357
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,397评论 1 372
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,944评论 5 363
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,631评论 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,033评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,321评论 1 293
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,128评论 3 398
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,347评论 2 377

推荐阅读更多精彩内容