Goroutine 是如何运行的

在 Go 语言中,没有线程,只有 goroutine,这也是 Go 语言原生支持高并发的关键。 goroutine 是 Go 语言对协程的实现。goroutine 非常轻量级,一般只有几 Kb 的大小,而一个线程最小都有 1 M。

goroutine 本身只是一个数据结构,真正让 goroutine 运行起来的是调度器

1. 为什么需要一个调度器

在计算机上运行的程序最终都是需要 CPU 去执行,协程只是运行在操作系统的用户态。协程真正的执行依然需要依靠操作系统内核态的线程去执行。

操作系统并不知道协程的存在,会把协程当做普通的程序来执行。既然协程是为了提高程序的执行效率,那么一个理想的情况是一个线程上可以执行多个协程。

如果一个协程对于一个线程,那就相当于协程的创建和运行还是由内核态来执行,这样的代价有点高。但如果一个线程上可以运行多个协程,如果其中的一个协程发生了阻塞,那么其他的协程就都无法执行了。

所以理想的情况是协程是线程的关系是 m:n,这样就可以克服 m:1 和 1:1 的缺点。但 m:n 的情况最为复杂,需要自己来实现协程在多个线程的调度,充分利用计算机的多核能力,再配合协程的轻量级的特性,实现程序的高并发。

在 Go 的实现中,goroutine 与内核态线程的对应关系就是是 m:n,所以就需要自己实现一个协程的调度器。

2. 调度器的结构

Go 调度器从最开始到现在也经历了不断的演进,最初的那个版本已经被放弃,目前使用的版本是在 2012 重新设计的,然后沿用至今。

现在用的这个调度器也被称之为 GMP 模型,3 个字母分表代表一个关键部件的名称:

  • G:表示 goroutine,就是代表待执行的协程
  • M:M 表示的是内核态的线程,goroutine 真正的执行需要依赖 M
  • P:P 是调度器的核心,它会把 G 调度到合适的 M 上去执行,让 G 的执行尽可能快的完成

如果 M,也就是线程如果想要运行任务,就需要去获取一个 P,然后从 P 的任务队列中获取 goroutine 来执行。

在 P 上,会有一个正在 M 上执行的 G,但是同时也会维护一个本地的队列,里面都是待执行的 G,其中 P 的数量由 GOMAXPROCS 环境变量或者 runtime.GOMAXPROCS() 来决定,这表示在同一时间,只有 GOMAXPROCS 数量个 goroutine 在执行。

P 与 M 的数量没有固定的关系,如果当前的 M 阻塞了,P 就会去创建或者切换到另一个 M 上。

3. 调度器是如何运作的

在介绍完 GMP 的结构之后,我们再来看一下 GMP 调度器是如何运行起来的。

在 Go 语言中,我们创建一个 goroutine 非常简单,只需要使用 go 关键字:

go func() {
    fmt.Println("New goroutine")
}()

这样就会创建上面所说的一个 G,然后放进调度器中开始调度。

每个 G 在被创建之后,都会被优先放入到本地队列中,如果本地队列已经满了,就会被放入到全局队列中。

然后每个 M 就开始执行 P 的本地队列中的 G,如果某个 M 把任务都执行完成之后,然后就会去去全局队列中拿 G,这里需要注意,每次去全局队列拿 G 的时候,都需要上锁,避免同样的任务被多次拿。

如果全局队列都被拿完了,而当前 M 也没有更多的 G 可以执行的时候,它就会去其他 P 的本地队列中拿任务,这个机制被称之为 work stealing 机制,每次会拿走一半的任务,向下取整,比如另一个 P 中有 3 个任务,那一半就是一个任务。

这样还有一个特别的场景需要说明,当一个 M 被阻塞时,M 就会与 P 解绑,让 P 去找其他空闲的 M 绑定执行后面的 G,如果没有空闲的 M,就会创建一个新的 M。当 M 阻塞结束之后,就会把 G 放入到全局队列中,这个机制称之为 hand off 机制。

work stealing 和 hand off 机制提高了线程的使用效率,避免的线程重复创建和销毁。

当全局队列为空,M 也没办法从其他的 P 中拿任务的时候,就会让自身进入自选状态,等待有新的 G 进来。最多只会有 GOMAXPROCS 个 M 在自旋状态,过多 M 的自旋会浪费 CPU 资源,多余的 M 的就会与 P 解绑,进入到休眠状态。

4. 小结

为了让 goroutine 的运行更有效率,Go 实现了一个用户态的调度器,这个调度器充分利用现代计算机的多核特性,同时让多个 goroutine 运行,同时 goroutine 设计的很轻量级,调度和上下文切换的代价都比较小。 而且利用 work stealing 和 hand off 机制,对线程进行复用,避免了线程的重复创建。

文 / Rayjun

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,182评论 6 543
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,489评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,290评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,776评论 1 317
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,510评论 6 412
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,866评论 1 328
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,860评论 3 447
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,036评论 0 290
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,585评论 1 336
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,331评论 3 358
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,536评论 1 374
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,058评论 5 363
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,754评论 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,154评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,469评论 1 295
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,273评论 3 399
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,505评论 2 379

推荐阅读更多精彩内容